We have seen how Retrieval Augmented Generation (RAG) systems can help prop up Large Language Models (LLMs) to avoid some of their worst tendencies. But that is just the beginning. The cutting edge stateoftheart systems are Multimodal and Agentic, involving additional models, tools, and reusable agents to break problems down in separate pieces, transform and aggregate the results, and validate the results before returning them to the user.
Come get introduced to some of the latest and greatest techniques for maximizing the value of your LLMbased systems while minimizing the risk.
We will cover:
Brian Sletten is a liberal arts-educated software engineer with a focus on forward-leaning technologies. His experience has spanned many industries including retail, banking, online games, defense, finance, hospitality and health care. He has a B.S. in Computer Science from the College of William and Mary and lives in Auburn, CA. He focuses on web architecture, resource-oriented computing, social networking, the Semantic Web, AI/ML, data science, 3D graphics, visualization, scalable systems, security consulting and other technologies of the late 20th and early 21st Centuries. He is also a rabid reader, devoted foodie and has excellent taste in music. If pressed, he might tell you about his International Pop Recording career.
More About Brian »